Option pricing under regime-switching jump–diffusion models
نویسندگان
چکیده
منابع مشابه
Option pricing under regime switching
This paper develops a family of option pricing models when the underlying stock price dynamic is modelled by a regime switching process in which prices remain in one volatility regime for a random amount of time before switching over into a new regime. Our family includes the regime switching models of Hamilton (Hamilton J 1989 Econometrica 57 357–84), in which volatility influences returns. In...
متن کاملA reduced lattice model for option pricing under regime-switching
We present a binomial approach for pricing contingent claims when the parameters governing the underlying asset process follow a regime-switching model. In each regime, the asset dynamics is discretized by a Cox-Ross-Rubinstein lattice derived by a simple transformation of the parameters characterizing the highest volatility tree, which allows a simultaneous representation of the asset value in...
متن کاملPricing forward starting options under regime switching jump diffusion models
Abstract: This paper studies the pricing of forward starting options under regime switching jump diffusion models. We suppose that a market economy has only two states, one is a stable state, the other is a high volatility state. The dynamics of a risky asset is modeled by a geometry Brownian motion when the market state is stable, otherwise, it follows a jump diffusion model. We propose two ty...
متن کاملGeneral Equilibrium Asset Pricing under Regime Switching
We have investigated the asset pricing problem in a general equilibrium in an economy with two states. Based on the assumption of a CRRA utility function, we have derived a partial differential equation satisfied by the representative agent’s cost function. In the case when the representative agent doesn’t have intermediate consumption, we have found an explicit solution of the cost function. A...
متن کاملEfficient pricing options under regime switching
In the paper, we propose two new efficient methods for pricing barrier option in wide classes of Lévy processes with/without regime switching. Both methods are based on the numerical Laplace transform inversion formulae and the Fast Wiener-Hopf factorization method developed in Kudryavtsev and Levendorskǐi (Finance Stoch. 13: 531–562, 2009). The first method uses the Gaver-Stehfest algorithm, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2013.07.046